Midway Design Review (MDR)

Neptune

Team 16 December 2, 2015

Department of Electrical and Computer Engineering

Team 16 Introduction

Department of Electrical and Computer Engineering

Problem

- Unauthorized entry (i.e, "Pool-Hopping") into residential pools
- Can result in:
 - Drowning deaths
 - Safety issues and property damage
 - Liability concerns regarding injuries to children
 - <u>Attractive Nuisance Doctrine-</u>landowner may be held liable for injuries to children trespassing on land if they are hurt on an object which is likely to attract children

Neptune - Previous Block Diagram

Department of Electrical and Computer Engineering

What Has Changed?

Newly Defined Application: Focus on detecting and reporting unmonitored entry into swimming pools

Neptune MDR

PIR Sensor Microphone Raspberry Pi 2 Camera WIFI

Department of Electrical and Computer Engineering

Our Solution

Neptune

Drowning Prevention and Pool Security System
Uses a PIR sensor to detect movement in combination with audio analysis to detect

splashes

- Alerts those nearby with audible alarm located poolside
- Contacts the person in charge by messaging MMS picture

Neptune - Revised Block Diagram

Department of Electrical and Computer Engineering

Advisor: Professor Holcomb

7

Greg

System Requirements

- Easy to install
 - Must be accessible for a majority of pool owners
- Small footprint and weatherproof for outdoor use
- Able to detect unexpected entry into a typical pool 24/7
 Needs to send an MMS text message with recognizable photo attachment to registered phones within 10 seconds
 Have the ability to turn off the system for a limited time while using the pool
 - Must minimize the likelihood of false alarms

Subsystem #1: **PIR Sensor**

Department of Electrical and Computer Engineering

Passive Infrared (PIR) Sensor

- Detects movement of people and animals
- Provides the earliest detection upon entering the pool area
- Reduces the false
 positives between
 humans and objects

¹Colliard-Piraud, Sylvain. "Signal conditioning for pyroelectric passive infrared (PIR) sensors". 2013. STMicroelectronics. <u>http://www.st.</u>com/web/en/resource/technical/document/application_note/DM0009 6551.pdf. Web. 2 Dec. 2015.

Figure 1: Principle of PIR Sensor¹

Figure 2: PIR used for Neptune

Hang

Department of Electrical and Computer Engineering

PIR Specifications

- Price: \$9.95
- Range: 6.92 meters
- Power supply: 0.5 mW
- Reset time: ~ 5s
- Output:
 - Motion detected:
 - LED:ON
 - Digital pulse: 2.88V
 - No motion detected:
 - LED:OFF
 - Digital pulse:0V

Output of PIR displayed on Oscilloscope

Department of Electrical and Computer Engineering

PIR Sensitivity

- This is a diagram showing the results of an experiment testing the effective range of the PIR sensor
- The experiment proved that the PIR has a 120° field of view.
- However, the range on the outskirts of the field is only about 10 ft
- As we moved nearer to a straight line in front of the sensor, an 84° vision cone with a range of around 20 ft was measured
- Maximum range of PIR proved to be 22.7 ft (6.9 m) but only for a very narrow portion of the field of view (3°)
- In conclusion, PIR will detect any object within 20 ft for an 84°scope (70% of field) and any object within 10 ft for the entire 120° field of view

Department of Electrical and Computer Engineering

Subsystem #2: Audio Analysis

Department of Electrical and Computer Engineering

Audio Example - Cannonball

The spectrogram on the left represents the below audio sample, which is a Cannonball type splash in a pool.

- (Hardware		Raspberry Pi 2		
	Passive Infrared	h			
- 1	Microphone		Signal Processing		
Ĩ	Camera w/ Flash		Wifi Module	.	Mobile
	Alarm/LED +	+)	Device

Department of Electrical and Computer Engineering

Audio Example - Speech & Splash

This spectrogram shows the distinction between spoken words and the higher frequency sound of a typical splash

Hardware Passive Infrared Microphone Camera w/ Flash Alarm/LED Mobile Device

Department of Electrical and Computer Engineering

Microphone Selection

CAD U1 Dynamic Recording Microphone

- USB to interface with Raspberry Pi 2
- Inexpensive, costs just \$20
- Cardioid pickup pattern

Based on the audio analysis of different splashes, most microphones would work for our system.

Department of Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Raspberry Pi 2

• Specifications:

- Power consumption: 9 Watts
- 40 Pin GPIO (17 I/O ports)
- Quad-core 900 MHz ARM Cortex A7 CPU

Software:

0

- MatLab for audio processing
 - MMS messaging using Gmail and Wifi connection

Wifi

- Raspberry Pi will utilize a USB WiFi Adapter in order to access local networks (150 Mbps)
 Since we are using GMail to
 - send MMS messages, internet

access is essential

 We decided to use Wifi as opposed to 4G/LTE because of cost considerations and complexities involved with using cellular chip

Camera with Flash

- Raspberry Pi Camera to take pictures of pool environment
- RPi Camera provides seamless integration with the Pi itself
- In order to take pictures at night, a
 LED will be utilized to provide a flash

Department of Electrical and Computer Engineering

GUI

Department of Electrical and Computer Engineering

Advisor: Professor Holcomb

Mobile Device

Cell Phone Communication

Department of Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Subsystem #4: Alarm System

Department of Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Advisor: Professor Holcomb

UMassAmherst

Poolside Alarm

- Once the motion and splash are detected, the control station will trigger the switch to activate the alarm system.
 - Power supply: 12V
 - Alarm:
 - Uses 90 Ω speaker
 Ranges from 8-32 dB sound
 - LED:
 - Uses diffused white 10mm LED

Alarm System Frequency vs. Amplitude Plot

Poolside Alarm System Design

- The combination of C1, R4, and C2 in series results in frequency generator circuit
 - C1: controls response time of the switch
 - C2: controls sound wave of the speaker
 - Sziklai Pair (Complementary Feedback Pair) along with C2 is designed to drive the LED and Speaker

Alarm System PSPICE Schematic

Department of Electrical and Computer Engineering

DEMO Alarm/ PIR

Department of Electrical and Computer Engineering

Expected Expenses

• Total expense is \$115.2

	Items	Quantity	Total Cost	
MAC	Raspberry Pi 2	1	\$35	
	PIR Sensors	2	\$20	
	Microphone	1	\$20	
	Wifi Adapter	1	\$7	
s. //	Raspberry Pi Camera	1	\$30	
	90Ω Speaker	1	\$1.25	
	Diffused 10mm LED	1	\$1.95	

Wrap up

- System will be powered by 120 VAC (wall)
- Using signals received from PIR sensors and microphone, extensive signal processing will be performed on Raspberry Pi. The goal is to derive a sort of "risk threshold" which will be used to determine if the the alert notifications (text and alarm) will be initiated
 - Swimming Pools are considered an "attractive nuisance". It is worth it to take all necessary precautions to prevent injury and death

Deliverables for CDR

Frankie:

- Receive input from microphone and integrate with Raspberry Pi 2
- Analyze input and determine if a splash occurred
- Determine appropriate "risk threshold"

Scott:

- Integrate PIR sensor with Raspberry Pi 2
- Take photo with flash when "risk threshold" is exceeded

Greg:

- Send captured photo over MMS
- Create user interface for initial setup of Neptune system

Hang:

- Increase decibel level of Alarm and integrate with system
- Design a circuit to provide power for the Neptune system

Responsibilities and Calendar for 2016

Task	Ortohan	November	December	January	February	March	81	Frankie
Task	October						Aprii	Scott
PDR								Hang
Design/Build Alarm Subsystem								Greg
Design/Build PIR sensing Subsystem								
Design/Build MMS Messaging Subsystem								
Record and Characterize Splash Audio								
Subsystems Complete (MDR)								
Integrate Camera/ Flash								
Integrate Power Supply					2			
Integrate Alarm Subsystem					2 C			
Integrate PIR Sensing Subsystem				(I				
Integrate MMS Messaging Subsystem								
Integrate Microphone and Splash Analysis			C		Sec. and sec.			
CDR								
Design/ Build Protective Housing								
Refine Prototype								
Demo Day								

Department of Electrical and Computer Engineering

Thank You! Questions?

Department of Electrical and Computer Engineering